Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(3): e35395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433609

RESUMO

6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.


Assuntos
Antineoplásicos , Mercaptopurina , Mercaptopurina/farmacologia , Zinco/farmacologia , Sistemas de Liberação de Medicamentos , Durapatita/farmacologia , Antineoplásicos/farmacologia , Íons , Concentração de Íons de Hidrogênio
2.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399039

RESUMO

Magnesium whitlockite (Mg-WH) powders were synthesized with remarkable efficiency via the dissolution-precipitation method by employing an environmentally benign precursor, gypsum. Under optimized conditions, each 5.00 g of initial gypsum yielded an impressive amount of 3.00 g (89% yield) of Mg-WH in a single batch. Remarkably, no XRD peaks attributable to impurity phases were observed, indicating the single-phase nature of the sample. FT-IR analysis confirmed the presence of the PO43- and HPO42- groups in the obtained Mg-WH phase. The SEM-EDX results confirmed that Mg-WH crystals with homogeneous Ca, Mg, P, and O distributions were obtained. In previously published research papers, the synthesis of Mg-WH has been consistently described as a highly intricate process due to material formation within a narrow pH and temperature range. Our proposed synthesis method is particularly compelling as it eliminates the need for meticulous monitoring, presenting a notable improvement in the quest for a more convenient and efficient Mg-WH synthesis. The proposed procedure not only emphasizes the effectiveness of the process, but also highlights its potential to meet significant demands, providing a reliable solution for large-scale production needs in various promising applications.

3.
Materials (Basel) ; 17(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255628

RESUMO

The rapid advances in technologies around the globe necessitate the development of new materials, nanostructures, and multicomponent composites with specific chemical and physical properties that can meet the requirements of modern technologies [...].

4.
Dalton Trans ; 53(4): 1722-1734, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38167907

RESUMO

In the present work, copper whitlockite (Cu-WH, Ca18Cu2(HPO4)2(PO4)12) was successfully synthesized and comprehensively characterized, founding the base knowledge for its future studies in medicine, particularly for bone regeneration. This material is a copper-containing analog of the well-known biomineral magnesium whitlockite (Mg-WH, Ca18Mg2(HPO4)2(PO4)12). The synthesis of powders was performed by a dissolution-precipitation method in an aqueous medium under hydrothermal conditions. Phase conversion from brushite (CaHPO4·2H2O) to Cu-WH took place in an acidic medium in the presence of Cu2+ ions. Optimization of the synthesis conditions in terms of medium pH, temperature, time, Ca/Cu molar ratio and concentration of starting materials was performed. The crystal structure of the synthesized products was confirmed by XRD, FTIR and Raman spectroscopy, 1H and 31P solid-state NMR, and EPR. Morphological features and elemental distribution of the synthesized powders were studied by means of SEM/EDX analysis. The ion release in SBF solution was estimated using ICP-OES. Cytotoxicity experiments were performed with MC3T3-E1 cells. The study on thermal stability revealed that the synthesized material is thermally unstable and gradually decomposes upon annealing to Cu-substituted ß-Ca3(PO4)2 and Ca2P2O7.

5.
Inorg Chem ; 62(27): 10635-10644, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37358196

RESUMO

Rare-earth manganese pyrochlores (R2Mn2O7) are frustrated magnetic materials, which previously have only been accessed using expensive high-pressure and high-temperature synthesis. In the present work, we demonstrate a convenient synthetic approach to synthesize R2Mn2O7 pyrochlores at ambient pressure. A series of pyrochlores (R = Y, Ho-Lu) were prepared by a simple and cost-effective molten salt method using NaCl and KCl as the flux. Moreover, phase-selectivity was demonstrated for yttrium manganese oxides (YMnO3 and Y2Mn2O7) by a simple variation of synthesis temperature and precursors-to-chlorides ratio. The synthetic procedure does not require high pressures or temperatures nor oxygen flow. All synthesized pyrochlores demonstrated ferromagnetic behavior at low temperature, and the magnetic properties were in good agreement with those of high-pressure-synthesized materials. The versatility of the method was confirmed by the preparation of a mixed-rare earth Y0.4Er0.4Tm0.4Yb0.4Lu0.4Mn2O7 solid solution─a compositionally complex high-entropy oxide.

6.
ACS Omega ; 8(15): 13911-13919, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091415

RESUMO

A series of highly flexible and environmentally friendly composites based on polydimethylsiloxane (PDMS) filled with 200 nm size ferroelectric BaTiO3 (BTO) particles at different concentrations (from 7 to 23 vol %) have been fabricated by a simple dispersion method. The dielectric, piezoelectric, and ultrasonic properties have been studied. The ferroelectric state of BTO was confirmed by differential scanning calorimetry and ultrasonic spectroscopy. The addition of BTO into PDMS strongly affects the dielectric properties of the composites. At low temperatures close to 160 K, the PDMS matrix exhibits a dielectric anomaly related to a dynamic glass transition, which shifts to higher temperatures as the BTO content increases due to the strong interaction between polymer chains and nanoparticles. Ultrasonic measurements demonstrate the appearance of a piezoelectric voltage signal on a thin plate of the composite with the highest available filler concentration (23 vol %) under longitudinal stress applied by a 10 MHz ultrasonic wave. As a result, at room temperature, the detected signal is characterized by output voltage and specific stored energy values of 10 mV and 367.3 MeV/m2, respectively, followed by a further increase with cooling to 35 mV at 150 K. The proposed BTO/PDMS composite system is thus a potential candidate for nanogenerators, namely, a simple, flexible, and lead-free device converting high-frequency (10 MHz) mechanical vibrations into electrical voltage.

7.
Materials (Basel) ; 15(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363138

RESUMO

In this study, an environmentally friendly sol-gel synthetic approach was used for the preparation of yttrium-doped MgFe2O4. Two series of compounds with different iron content were synthesized and A-site substitution effects were investigated. In the first series, the iron content was fixed and the charge balance was suggested to be compensated by a partial reduction of Fe3+ to Fe2+ or formation of interstitial O2- ions. For the second series of samples, the iron content was reduced in accordance with the substitution level to compensate for the excess of positive charge, which accumulates due to replacing divalent Mg2+ with trivalent Y3+ ions. Structural, morphological and magnetic properties were inspected. It was observed that single-phase compounds can only form when the substitution level reaches 20 mol% of Y3+ ions and iron content is reduced. The coercivity as well as saturation magnetization decreased with the increase in yttrium content. Mössbauer spectroscopy was used to investigate the iron content in both tetrahedral and octahedral positions.

8.
Phys Chem Chem Phys ; 24(31): 18952-18965, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916288

RESUMO

The solid-state 1H, 31P NMR spectra and cross-polarization (CP MAS) kinetics in the series of samples containing amorphous phosphate phase (AMP), composite of AMP + nano-structured calcium hydroxyapatite (nano-CaHA) and high-crystalline nano-CaHA were studied under moderate spinning rates (5-30 kHz). The combined analysis of the solid-state 1H and 31P NMR spectra provides the possibility to determine the hydration numbers of the components and the phase composition index. A broad set of spin dynamics models (isotropic/anisotropic, relaxing/non-relaxing, secular/semi-non-secular) was applied and fitted to the experimental CP MAS data. The anisotropic model with the angular averaging of dipolar coupling was applied for AMP and nano-CaHA for the first time. It was deduced that the spin diffusion in AMP is close to isotropic, whereas it is highly anisotropic in nano-CaHA being close to the Ising-type. This can be caused by the different number of internuclear interactions that must be explicitly considered in the spin system for AMP (I-S spin pair) and nano-CaHA (IN-S spin system with N ≥ 2). The P-H distance in nano-CaHA was found to be significantly shorter than its crystallographic value. An underestimation can be caused by several factors, among those - proton conductivity via a large-amplitude motion of protons (O-H tumbling and the short-range diffusion) that occurs along OH- chains. The P-H distance deduced for AMP, i.e. the compound with HPO42- as the dominant structure, is fairly well matched to the crystallographic data. This means that the CP MAS kinetics is a capable technique to obtain complementary information on the proton localization in H-bonds and the proton transfer in the cases where traditional structure determination methods fail.


Assuntos
Durapatita , Prótons , Monofosfato de Adenosina , Cristalografia , Espectroscopia de Ressonância Magnética/métodos
9.
Polymers (Basel) ; 14(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015625

RESUMO

Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρo (V - Vc)-t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 107 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.

10.
Sci Rep ; 12(1): 7116, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504944

RESUMO

In the present work, three different Mn2+-doped calcium pyrophosphate (CPP, Ca2P2O7) polymorphs were synthesized by wet co-precipitation method followed by annealing at different temperatures. The crystal structure and purity were studied by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR), solid-state nuclear magnetic resonance (SS-NMR), and electron paramagnetic resonance (EPR) spectroscopies. Scanning electron microscopy (SEM) was used to investigate the morphological features of the synthesized products. Optical properties were investigated using photoluminescence measurements. Excitation spectra, emission spectra, and photoluminescence decay curves of the samples were studied. All Mn-doped polymorphs exhibited a broadband emission ranging from approximately 500 to 730 nm. The emission maximum was host-dependent and centered at around 580, 570, and 595 nm for γ-, ß-, and α-CPP, respectively.


Assuntos
Pirofosfato de Cálcio , Luminescência , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160993

RESUMO

The structural state and crystal structure of Lu(1-x)ScxFeO3 (0 ≤ x ≤ 1) compounds prepared by a chemical route based on a modified sol-gel method were investigated using X-ray diffraction, Raman spectroscopy, as well as scanning electron microscopy. It was observed that chemical doping with Sc ions led to a structural phase transition from the orthorhombic structure to the hexagonal structure via a wide two-phase concentration region of 0.1 < x < 0.45. An increase in scandium content above 80 mole% led to the stabilization of the non-perovskite bixbyite phase specific for the compound ScFeO3. The concentration stability of the different structural phases, as well as grain morphology, were studied depending on the chemical composition and synthesis conditions. Based on the data obtained for the analyzed samples, a composition-dependent phase diagram was constructed.

12.
Chemosphere ; 286(Pt 1): 131556, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34311403

RESUMO

In October 2019, a fire occurred in a tire-recycling facility in Alytus (Lithuania), where around 5000 t of tires had been stored. Only after 10 days was the fire completely extinguished, and the potential contamination of the surrounding environment has raised a large public concern. With an aim to assess the pollution level and pollutants distribution in the surrounding area, we conducted a study on polycyclic aromatic hydrocarbons (PAHs) and heavy metals. High concentrations of total PAHs were found inside the fire zone (315-5872 ng g-1 dw), whereas those detected in the surrounding soils were significantly lower (1.9-72 ng g-1 dw). Some areas with higher anthropogenic impact were found to contain PAH concentrations as high as 70198 ng g-1 dw. Concentrations of Cr, Zn, Ni, Cu, Pb were in the range of 1.1-93.9; 20.7-227.5; 0.2-35.7; 0.9-21.3; 0.9-102.9 µg g-1, respectively. Zn was the prevailing metal in the fire zone, elevated concentrations of Cr, Ni and Cu were also detected in this area. Principal component analysis (PCA) revealed several locations affected by the fire. The one located the closest to the fire zone was found to be highly contaminated with the heavy metals, just like the whole fire zone. Increase of the carcinogenic risk was observed in the fire zone, but no significant risk was detected in the fire-affected stations. The highest carcinogenic risk was detected in the zones with high anthropogenic loading (traffic and urban activities).


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , China , Monitoramento Ambiental , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Solo , Poluentes do Solo/análise
13.
Materials (Basel) ; 14(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500933

RESUMO

In this work, lanthanum and manganese co-substitution effects on different properties of bismuth ferrite solid solutions Bi1-xLaxFe0.85Mn0.15O3 (x from 0 to 1) prepared by a sol-gel synthetic approach have been investigated. It was observed that the structural, morphological, and magnetic properties of obtained specimens are influenced by the amount of introduced La3+ ions. Surprisingly, only the compound with a composition of BiFe0.85Mn0.15O3 was not monophasic, and the presence of neighboring phases was determined from X-ray diffraction analysis and Mössbauer measurements. Structural transitions from orthorhombic to cubic and back to orthorhombic were also observed depending on the La3+ amount. Antiferromagnetic behaviour was observed for all of the samples, with the highest magnetisation values for Bi0.5La0.5Fe0.85Mn0.15O3. Additionally, structural attributes and morphological features were evaluated by Raman spectroscopy and scanning electron microscopy (SEM), respectively.

14.
ACS Biomater Sci Eng ; 7(8): 3586-3593, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34318657

RESUMO

In the present work, a series of zinc whitlockite (CaxZny(HPO4)2(PO4)12) powders was synthesized by a low-temperature dissolution-precipitation process for the first time. The phase conversion from calcium hydroxyapatite to zinc whitlockite occurred in an acidic medium in the presence of Zn2+ ions. Variable chemical composition of the synthesis products was achieved by changing Ca-to-Zn molar ratio in the reaction mixture. Investigation of the phase evolution as a function of time demonstrated that phase-pure zinc whitlockite powders can be synthesized in just 3 h. It is also demonstrated that single-phase products can be obtained when the Ca-to-Zn ratio in the reaction medium is in the range from 9 to 30. With higher or lower ratios, neighboring crystal phases such as scholzite or calcium hydroxyapatite were obtained. The morphology of the synthesized powders was found to be dependent on the chemical composition, transforming from hexagonal to rhombohedral plates with the increase of Zn content. Thermal stability studies revealed that the synthesized compounds were thermally unstable and decomposed upon heat treatment.


Assuntos
Durapatita , Zinco , Fosfatos de Cálcio , Solubilidade , Difração de Raios X
15.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805970

RESUMO

In the present work, Cr-substituted Mg3Al1-xCrx layered double hydroxides (LDHs) were synthesised through the phase conversion of sol-gel-derived mixed-metal oxides in an aqueous medium. The chromium substitution level in the range of 1 to 25 mol% was investigated. It was demonstrated that all synthesised specimens were single-phase LDHs. The results of elemental analysis confirmed that the suggested synthetic sol-gel chemistry approach is suitable for the preparation of LDHs with a highly controllable chemical composition. The surface microstructure of sol-gel-derived Mg3Al1-xCrx LDHs does not depend on the chromium substitution level. The formation of plate-like agglomerated particles, which consist of hexagonally shaped nanocrystallites varying in size from approximately 200 to 300 nm, was observed. Optical properties of the synthesised Mg3Al1-xCrx LDHs were investigated by means of photoluminescence. All Cr-containing powders exhibited characteristic emission in the red region of the visible spectrum. The strongest emission was observed for the sample doped with 5 mol% Cr3+ ions. However, the emission intensity of samples doped with 1-10 mol% Cr3+ ions was relatively similar. A further increase in the Cr3+ ion concentration to 25 mol% resulted in severe concentration quenching.

16.
Sci Rep ; 11(1): 2875, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536490

RESUMO

In the present work, gadolinium substitution effects on the properties of yttrium manganite YxGd1-xMn0.97Fe0.03O3 (x from 0 to 1 with a step of 0.2) synthesized by an aqueous sol-gel method have been investigated. Partial substitution of Mn3+ by 57Fe3+ in the manganite was also performed in order to investigate deeper the structural properties of synthesized compounds applying Mössbauer spectroscopy. It was demonstrated that substitution of Y3+ by Gd3+ ions leads to the changes of structural, magnetic and morphological properties of investigated system. The crystal structure gradually transformed from hexagonal to orthorhombic with an increase of Gd3+ content in the crystal lattice. The mixed phase was obtained when x = 0.6, whereas other compounds were determined to be monophasic. Magnetization measurements revealed paramagnetic behavior of all specimens, however magnetization values were found to be dependent on chemical composition of the samples. Solid solutions with orthorhombic structure revealed higher magnetization values compared to those of hexagonal samples. The highest magnetization was observed for pure GdMn0.97Fe0.03O3. Structural properties were investigated by powder X-ray diffraction, Mössbauer, FTIR and Raman spectroscopies. Morphological features of the synthesized specimens were studied by scanning electron microscopy (SEM).

17.
Materials (Basel) ; 13(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957733

RESUMO

Interest in magnetic nanoparticles is primarily due to their practical use. In this work, for the production of nanocrystalline powders of pure and gadolinium doped iron oxides, the extraction-pyrolytic method (EPM) was used. As a precursor, either iron-containing extract (iron (III) caproate in caproic acid) or its mixture with gadolinium-containing extract (gadolinium (III) valerate in valeric acid) was used. The mixed precursor contained 0.5 mol %, 2.5 mol %, 12.5 mol %, 50 mol %, and 75 mol % gadolinium in relation to the iron content. The formation of iron oxide phases, depending on the preparation conditions, was investigated. According to the results obtained, it was demonstrated that the presence of more than 2.5 mol % gadolinium additive in the mixed precursor inhibits the magnetite-to-hematite transformation process during thermal treatment. Produced samples were characterized by XRD and SEM methods, and the magnetic properties were studied.

18.
Materials (Basel) ; 13(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645940

RESUMO

In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the formation of neighboring crystal phases was observed. The thermal behavior of BFO precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis and Mössbauer spectroscopy were employed for the investigation of structural properties. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials. The obtained powders were also characterized by magnetization measurements, which showed antiferromagnetic behavior of BFO powders.

19.
Mater Sci Eng C Mater Biol Appl ; 112: 110918, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409069

RESUMO

In the present work, Fe3+ and Zn2+ co-substituted ß-tricalcium phosphate (ß-TCP) has been synthesized by wet co-precipitation method. Co-substitution level in the range from 1 to 5 mol% has been studied. Thermal decomposition of as-prepared precipitates was shown to be affected by introducing of foreign ions, decreasing the decomposition temperature of precursor. It was determined that partial substitution of Ca2+ by Fe3+ and Zn2+ ions leads to the change in lattice parameters, which gradually decrease as doping level increases. Lattice distortion was also confirmed by means of Raman spectroscopy, which showed gradual change of the peaks shape in the Raman spectra. Rietveld refinement and electron paramagnetic resonance study confirmed that Fe3+ ions occupy only one Ca crystallographic site until Fe3+ and Zn2+ substitution level reaches 5 mol%. All co-substituted samples revealed paramagnetic behavior, magnetization of powders was determined to be linearly dependent on concentration of Fe3+ ions. Cytotoxicity of the synthesized species was estimated by in vivo assay using zebrafish (Danio rerio) and revealed non-toxic nature of the samples. Preparation of ceramic bodies from the powders was performed, however the results obtained on Vickers hardness of the ceramics did not show improvement in mechanical properties induced by co-substitution.


Assuntos
Fosfatos de Cálcio/química , Ferro/química , Magnetismo , Zinco/química , Animais , Fosfatos de Cálcio/síntese química , Fosfatos de Cálcio/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Dureza , Pós/química , Espectroscopia de Mossbauer , Análise Espectral Raman , Temperatura , Peixe-Zebra/crescimento & desenvolvimento
20.
Sci Rep ; 9(1): 10419, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320699

RESUMO

Single-phase magnesium-aluminium layered double hydroxide (LDH) intercalated with dihydrogen phosphate was successfully produced by hydration of nanopowder of the respective mixed metal oxide (MMO) obtained using sol-gel based method followed by a two-step anion exchange hydroxide-to-chloride and chloride-to-phosphate. The MMO with the metal cation ratio of Mg/Al = 2:1 was prepared using the aqueous sol-gel method. Processes of the parent Mg2Al-OH LDH formation and the successive anion-exchanges, ОН- → Cl- and Cl- → H2PO4-, were considerably accelerated via the application of high-power (1.5 kW) ultrasound. The crystalline phases formed at all stages of the Mg2Al-H2PO4 LDH production were characterized using X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy, inductive coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Based on the data of chemical analysis and the XRD data, the type of the intercalated phosphate anion was determined and the arrangement of this anion in the interlayer was modelled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...